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Propagation of wave packets in randomly stratified media
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The propagation of a narrow-band signal radiated by a point source in a randomly layered absorbing medium
is studied asymptotically in the weak-scattering limit. It is shown that in a disordered stratified medium that is
homogeneous on average, a pulse is channelled along the layers in a narrow strip in the vicinity of the source.
The space-time distribution of the pulse energy is calculated. Far from the source, the shape of wave packets
is universal and independent of the frequency spectrum of the radiated signal. Strong localization effects
manifest themselves also as a low-decaying tail of the pulse and a strong time delay in the direction of
stratification. The frequency-momentum correlation function in a one-dimensional random medium is calcu-
lated.
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I. INTRODUCTION

The propagation of quantum wave packets and pulse
electromagnetic radiation in disordered media is a class
problem with a long-standing history. The continued inter
of physicists in this problem is stimulated both by the qu
to better understand such fundamental problems of diso
as correlations in momentum-energy space, localization
time-dependent fields, Wigner time delay, etc., and also
the growing number of applications that pulsed signals fi
in modern electronics, telecommunications, optics, and g
physics. Considerable theoretical and experimental inve
gations have been expended to study the propagatio
pulses in randomly inhomogeneous media in diffusive
gime ~see, for example, Ref.@1# and references therein!.
Much less studied is the space-time evolution of wave pa
ets in disordered one-dimensional and layered systems w
the interference of multiple scattered fields is of crucial i
portance.

It was shown in Refs.@2,3# that in a homogeneous o
average, randomly layered medium where the refractive
dex ~potential! is a random function of one coordinate on
waves~quantum particles! are localized in the direction o
stratification and propagate along layers forming the
called fluctuational waveguide. The statistics of wave fie
radiated by a monochromatic pointlike source in a random
layered medium was studied in@3,4#. For its analysis, the
resonance expansion method was applied to calculate c
lation functions of plane harmonics with different ‘‘tran
verse energies,’’ i.e., squared projections of the wave ve
on the axis of stratification. In the case of a nonstation
signal, the problem becomes much more complicated
cause it involves correlation analysis of waves with differe
both frequencies and transverse wave numbers.

In the present paper, we investigate analytically the spa
time distribution of the average intensity of pulse field ra
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ated by a point source in a randomly stratified weakly sc
tering medium with dissipation. As an intermediate resu
the correlation function of the propagators~Green functions!
with different frequencies and transversal wave number
calculated. Localization of the constituent plane harmonic
shown to result in channelling of the pulse within the flu
tuation waveguide and in a significant modification of t
spectral content of the signal far away from the source. T
shape~envelope! of the pulse in the far zone is calculated.
is shown to be universal and independent on the spectrum
the radiated packet. This is due to both the filtration of t
harmonics by their localization radii transverse to the lay
and to the difference in phase velocities of those harmon
in this direction. The same reasons cause a strong time d
of the pulse when the receiver is shifted towards the direc
of stratification from the horizontal plane in which the sour
is located. This effect is a clear manifestation of the de
time concept introduced earlier@5# on the basis of scattering
phases of quantum particles moving in disordered media

II. FORMULATION OF THE PROBLEM

We consider the wave equation for the scalar nonmo
chromatic fieldG(R,R0ut) radiated by a source located at
point R0 in an infinite medium that is randomly stratifie
along thez axis,

FD2
1

c2

]

]t S «~z!
]

]t
14ps D GG~R,R0ut !

54pd~R2R0!A~ t !e2 iv0t. ~1!

Here,D is Laplacian,«(z)5«01d«(z) is the ~random! di-
electric permeability with the mean value«0 , s is the con-
ductivity of the medium,A(t) is the envelope of a wave
packet ~pulse! with the carrier frequencyv0. In what fol-
lows, we consider a narrow-band wave packet, which me
thatA(t) is a smooth function as compared to the oscillati
exponential in the right-hand side~r.h.s.! of Eq. ~1!.
©2001 The American Physical Society20-1
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Since permeability« in Eq. ~1! depends on one coordina
only, the problem of finding the mean intensity^I &5^uGu2&
at a given pointR is reduced, after Fourier transformation
the $x,y% plane, to calculation of the one-dimensional co
relator of harmonics propagating along the axis of stratifi
tion,

^I ~R,R0ut !&5
1

~2p!4E E
0

`

dk1 dk2 k1k2J0~k1% !J0~k2% !

3E E
2`

`

dv dV e2 iVtw~v1V2v0!

3w* ~v2v0!K~z,z0uk1 ,k2 ;v,V!. ~2!

Here, angular brackets denote statistical averaging over
ensemble of random functionsd«(z), J0(x) is the Bessel
function, %5uRi2R0iu is the in-plane distance from th
source,Ri is the radius-vector component parallel to the la
ers,w(v) is the spectral function of the radiated pulse. Fun
tion K( . . . ) in Eq. ~2! is the two-point correlation function

K~z,z0uk1 ,k2 ;v1 ,v2!5^G~z,z0uk1 ,v1!G* ~z,z0uk2 ,v2!&

~3!

that we present in a form more convenient for subsequ
calculation by changing the integration variables, viz.,

K~z,z0uk1 ,k2 ;v,V!5^G~z,z0uq21Dq2,v1V!

3G * ~z,z0uq2,v!&. ~4!

Here, v5v2 , V5v12v2 , q25km
2 2k2

2 , km
2 5«0(v/c)2.

The ‘‘energy’’ differenceDq2 is given by

Dq25k2
22k1

21«0

~v1V!22v2

c2

1 i Fg~v1V!S v1V

c D 2

1g~v!S v

c D 2G , ~5!

g(v)54ps/v. In Eq. ~4!, G(z,z0uq2,v) is the Fourier
transform over in-plane coordinateRi2R0i and time of the
Green functionG from Eq. ~1!. This function obeys the
equation

F d2

dz2
1q21 i01d«~z!S v

c D 2GG~z,z0uq2,v!54pd~z2z0!.

~6!

Formula ~5! for energy differenceDq2 is valid, strictly
speaking, in the case of weakly dissipative medium, i
when

ug~v!u!1. ~7!

Under the assumptions of weak dissipation and spectral
rowness of the pulse the expression~5! may be readily trans-
formed to the form
05662
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Dq25k2
22k1

212«0

vV

c2
1 i2g~v!S v

c D 2

. ~8!

Correlation functions of the type~3!, ~4! with v15v2
~i.e., with V50) that appear in the theory of stationary pr
cesses in one-dimensional~1D! disordered systems may b
calculated using diagrammatic methods@6,7#, functional
method of Ref.@8#, or the resonance expansion method@3,4#.
In the next section, the latter approach is shown to be q
universal and well applicable~after some modification! also
to nonstationary stochastic problems, in particular, for cal
lation of the correlation function~4! with VÞ0.

III. RESONANT SCATTERING APPROXIMATION
FOR FIELD CORRELATORS

In this section, the method used in Refs.@3,4# for calcu-
lating statistical moments of the field radiated by a mon
chromatic pointlike source is generalized to the case of pu
signals. The method allows for rigorous calculation of t
correlator~4! provided a single scattering may be regarded
weak.

A. The resonance expansion method

To calculate the intensity using Eq.~2!, we have to know
the Green functions in Eq.~4! for all values ofq2 in the
interval 2`,q2,1`. However, as it was shown in Re
@4#, in the case of weak scattering, the contribution of spa
modes withq2,0 ~the so-called evanescent modes! is sig-
nificant only in a thickness ofuz2z0u;km

21 near the source
position z0. In the rest of space, the intensity is largely d
termined by the propagating~extended! modes for which the
Green function obeys Eq.~6! with q2.0. The key point of
the following calculations is the so-called resonance exp
sion of this Green function:

G~z,z0uq2,v!5G1~z,z0!eiq(z2z0)1G2~z,z0!e2 iq(z2z0)

1G3~z,z0!eiq(z1z0)1G4~z,z0!e2 iq(z1z0),

~9!

whereGi(z,z0)[Gi(z,z0uq2,v) are smooth factors in com
parison with the ‘‘fast’’ exponentials. The assumption
smoothness of the ‘‘amplitudes’’Gi(z,z0) is based on the
requirement for weak scattering~WS! of the pulse-
constituting plane harmonics, which means that the exti
tion lengthsL of the harmonics, see Eqs.~14! below, are
large compared to their wavelengths and to the correla
radiusr c of d«(z) as well.

Formula~9! represents the exact Green function as a s
of relatively small packets of spatial harmonics centered
four basic ones, viz. exp@6iq(z6z0)#. Such a form of the
solution of Eq.~6! implies that onlyresonantharmonics in
the power spectrum of the permeability fluctuationd«(z)
contribute significantly to the scattering of a wave with t
wave-numberq, namely, the harmonics with the momen
close to zero, which are responsible for the forward scat
ing, and close to62q ~backward scattering!.
0-2
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PROPAGATION OF WAVE PACKETS IN RANDOMLY . . . PHYSICAL REVIEW E64 056620
Using the Green function in the form~9!, one may per-
form spatial averaging of Eq.~6! over an interval 2l , such
that q21, r c!2l !L. As the result, for the matrix

Ĝ5S G1 G3

G4 G2
D ~10!

of the smooth amplitudes from Eq.~9!, the equation follows

F i ŝ3

d

dz
2h~z!2âz* ~z!2â†z~z!G Ĝ~z,z0!5

2p

q
d~z2z0!.

~11!

Here,ŝ3 and â are 232 matrices

ŝ35S 1 0

0 21D , â5S 0 0

1 0D ,

superscript (†) stands for Hermitian and the asterisk
complex conjugation, respectively. Random functions~‘‘po-
tentials’’! h(z) and z(z) are constructed of narrow packe
of spatial harmonics ofd«(z) as follows:

h~z!5
21

2q S v

c D 2E
z2 l

z1 l dz8

2l
d«~z8!,

z~z!5
21

2q S v

c D 2E
z2 l

z1 l dz8

2l
e22iqz8d«~z8!. ~12!

On the assumption of weak scattering, functionsh(z) and
z(z) can be thought of as Gaussian random processes
spective of the statistics ofd«(z) @9#. Correlation of these
functions was studied in detail in Ref.@10# where the evi-
dence was given that only two binary correlators of the
tentials~12!, viz. ^h(z)h(z8)& and^z(z)z* (z8)&, are differ-
ent from zero, and may be replaced by weightedd functions,

^h~z!h~z8!&5L f
21d~z2z8!,

^z~z!z* ~z8!&5Lb
21d~z2z8!. ~13!

In Eq. ~13!, length parametersL f ,b are given by

L f~q,v!5S c

v D 4 ~2q!2

W̃~0!
, Lb~q,v!5S c

v D 4 ~2q!2

W̃~2q!
,

~14!

W̃(p) is the Fourier transform of the binary correlation fun
tion of the permeability fluctuations,

W~z2z8!5^d«~z!d«~z8!&. ~15!

It is shown in Ref.@11# that Eq. ~14! are nothing but the
extinction lengths related to the forward~f! and backward~b!
scattering of the harmonics with the wave-numberq and fre-
quencyv. In terms of these lengths, the WS conditions us
when deriving Eq.~11! are expressed through the inequa
ties

q21,r c!L f ,b . ~16!
05662
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Notice that the relationship between small lengthsq21 and
r c is of no crucial importance. It only specifies the Fouri
components of the correlation function~15!, and thus, the
possible distinction between the ‘‘forward’’ and ‘‘back
ward’’ extinction lengths~14!.

For the resonance approximation~equivalent to WS re-
quirement! to be most efficient, it is advantageous to rep
sent both of the Green functions entering the correlator~4! in
the form of the expansion~9! with the same fast exponen
tials, i.e., with the same wave-numberq. Although the am-
plitude functionsGi in Eq. ~9! cannot be found explicitly, this
representation proves to be quite helpful for the calculat
of the correlator~4!. Indeed, if we present both of Gree
functions from Eq.~4! in the form of expansion~9! with the
same fast exponentials, only ‘‘diagonal elements’’ of t
product ĜĜ* remain nonzero after the averaging~see next
subsection!.

Note that functionsGi in Eq. ~9! may be recognized a
slowly varying amplitudes if along with the WS conditio
~16! the inequality holds

uDq2u!q2. ~17!

Physically, this inequality is natural for the definition o
weak scattering since the quantityq2 has the meaning o
energy in Eq.~6!. As it will be clear from the subsequen
calculation, the inequality~17! is coincident with the condi-
tions ~16! supplemented by the requirements of weak dis
pation, g(v0)!1, and narrowness of the pulse frequen
band.

Green function of Eq.~6! is the solution of a two-point
boundary-value problem with conditions given atz→6`.
However, to systematically perform the averaging over r
dom potentials without resort to finite-order perturbation a
proximations~that fail to take into account correctly the in
terference of multiply scattered waves in one-dimensio
random systems! it is much more convenient to deal wit
random functions obeying Cauchy problems that are ca
functionals of the random potentials~12!. Fortunately, the
elements of the Green matrix~10! may be factorized into
products of the auxiliary one-coordinate functions, ea
meeting the initial-value problem conditioned at either p
or minus infinity. The factorization scheme is outlined
Appendix A. Evolutional character of the equations for tho
functions allows us to obtain finite-difference Eqs.~21! ~see
Refs.@12,13#! for auxiliary correlators with the help of which
the correlation function~4! may be appropriately calculated

B. Asymptotics of the correlation function Eq. „4…

To obtain analytic expressions for the correlation functi
~4!, we assume the medium to be statistically uniform
average inz direction, and then pass from the coordina
representation of Eq.~4! to its Fourier transform over the
variablez2z0,

K~s!5E
2`

`

dze2 is(z2z0)K~z,z0!. ~18!
0-3
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After substitution of the matrix elements of Green mat
~10! in the form ~A7! into Eq. ~4!, and then into Eq.~18!
~where all noncoordinate arguments of function~4! are omit-
ted for a while!, one has to expand the factorsAD(z0) and
A* (z0) of those elements in series of the productsG1

D G2
D

and G1* G2* . Possibility of such expansion is ensured
retro-attenuationi0 in Eq. ~6!. In the course of statistica
averaging, each of the terms of the double series produ
for the functionK(s) is decomposed into a product of fun
tionals of different causal types, viz. ‘‘plus’’ and ‘‘minus’
type. Since the potentials~12! are effectivelyd correlated,
the supports of the random functions entering the function
of different types do not overlap. Therefore, statistical av
aging of those functionals may be performed independen

It may be shown that the correlators of the ty
^(G6

D )n(G6* )m& with nÞm in the double series forK(s) are
exactly equal to zero. Indeed, from Eqs.~A3! it follows that
the functional series for the functionsp6(z) consist solely of
the terms with equal numbers of the functional factorsz and
z* , whereas the quantitiesg6 contain extra factors,z* for
g1 andz* for g2 . Inasmuch as under WS conditions~16!
functional variables~12! may be regarded as Gaussia
distributed random fields, the above-indicated correlat
have nonzero values only ifn5m.

The foregoing procedure has been described in deta
Refs.@12,13#. Omitting here tedious calculations, we prese
the final result of the averaging. The functionK(s) is repre-
sented as a series,

K~s!5S 2p

q D 2

(
n50

`

~Rn1Rn11!@Pn~s!1Pn~2s!#,

~19!

whereRn andPn(s) are the auxiliary correlation functions o
the form

Rn5^@G6
D ~z!G6* ~z!#n&, ~20a!

Pn~6s!56K @G6
D ~z!G6* ~z!#nE

z

6`

dz8 exp@ is~z2z8!#

3
p6

D ~z8!p6* ~z8!1g6
D ~z8!g6* ~z8!

p6
D ~z!p6* ~z!

L , ~20b!

that obey the following finite-difference equations

bRn2n~Rn111Rn2122Rn!1a2~112Lb /Lf !nRn50,
~21a!

2~n11!2@Pn11~s!2Pn~s!#1n2@Pn~s!2Pn21~s!#

1S isLb1
b

2 D Pn~s!1bnPn~s!1
a2

2 F2n212n11

1
Lb

Lf
~112n!2GPn~s!5Lb~Rn1Rn11!, ~21b!

where the following notations are used:
05662
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Dq2

q
Lb , a5

~v1V!22v2

v~v1V!
,

Lf ,b5S v

v1V D 2

L f ,b . ~22!

Equations~21! have to be supplemented with the requir
ment that functionsRn andPn(s) tend to zero asn→`. As
regards their behavior atn50, from definition~20a!, it fol-
lows that R051, whereas forP0(s) integrability over the
variables is sufficient. Equations of this type have been stu
ied in Refs.@6–8# and @12,13# in the context of the conduc
tivity of 1D disordered systems.

The terms proportional toa2 allow, in principle, for arbi-
trary nonstationarity of the wave to be taken into accou
Yet narrowness of the pulse frequency band assumed in
paper is consistent with the inequalityuau!1 allowing for
Eqs. ~21! to be solved perturbatively in this parameter.
Appendix B, it is demonstrated that if the inequality hol
ubu!1, the summands}a2 in Eqs. ~21! contribute negligi-
bly to the sum~19!, in accordance with the condition~16!.
As a consequence, in the limit ofubu→0, we arrive at the
following expression for correlation function~4!,

K~z,z0 ;k1 ,k2 ;v,V!'
i ~2p!2

qL bDq2E0

`

dm W~m!n2~m!

3expS 2
n~m!uz2z0u

Lb
D . ~23!

Here, the notations are used

W~m!5
p2

2

m sinh~pm/2!

cosh3~pm/2!
, n~m!5

11m2

4
. ~24!

In the limiting caseubu@1, the terms proportional toa2

in Eqs. ~21! result in small, though nota priori negligible,
corrections to the basic approximation for the correlat
function ~4!,

K~z,z0 ;k1 ,k2 ;v,V!

'S 2p

q D 2F12
a2

2 S 11
Lb

Lf
D uz2z0u

Lb
G

3expF2S 11
b

2 D uz2z0u
Lb

G . ~25!

It will be shown in the next section that the average intens
of a narrow-band signal is mainly determined by the beh
ior of the correlator~4! at k1'k2, that corresponds toubu
!1 and, consequently, to the asymptotic expression~23!.

IV. CALCULATION OF THE PULSE SHAPE

To calculate the average intensity^I (R,R0ut)& we evalu-
ate the integrals overV andv in Eq. ~2! with the correlator
K(z,z0uk1 ,k2 ;v,V) given by formula ~23! and function
w(v1V2v0) presented in the form
0-4
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w~v1V2v0!5E
2`

`

dt8 A~ t8!ei (v1V2v0)t8. ~26!

From asymptotic expression~23!, it follows that in the lower
half plane of the complexV, there is a pole with ImVp5
24p is/«0 , (Dq50), which allows us to calculate the inte
gral overV as a residue in this point. It is obvious that
nonzero result is obtained for those values oft8 that are
limited by the condition

t8,t* ~q2 ,v!5t2t~q2 ,v!. ~27!

Here,c̃5c/A«0, notationt(q,v) stands for the time interva
necessary for the plane harmonicsq to pass from the plane o
the source (z0) to the plane of the receiver (z),

t~q,v!5
uz2z0u

c̃q/km

. ~28!

The next step is to calculate the integral overv in Eq. ~2!.
Due to the presence of the narrow functionw* (v2v0), all
physical quantities in the integrand, in particularg(v) and
km(v), may be taken at the carrier frequencyv0. Since in
the present paper we are mainly interested in localiza
effects, dissipation in the medium is supposed to be sm
enough, and the dissipation rate of the carrier harmonic
much larger than the corresponding extinction lengths~14!,

c

v0g~v0!
@L f ,b~q,v0!. ~29!

Subject to the condition~29!, the integral overv recovers the
functionA* (t8), whereupon the average intensity is reduc
to

^I ~R,R0 ;t !&'
c̃2

8v0
E E

0

km
2 dq1

2 dq2
2

q2Lb~q2!
J0~%Akm

2 2q1
2!

3J0~%Akm
2 2q2

2!

3E
2`

t* (q2 ,v0)
dt8uA~ t8!u2 expF2g

v0

«0
~ t2t8!

1 i
c̃2~ t2t8!

2v0
~q1

22q2
2!G

3E
0

`

dm W~m!n2~m!expF2n~m!
uz2z0u
Lb~q2!G .

~30!

From here on we address the case when the receiv
located far from the source, so that

km%@1. ~31!
05662
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To integrate in Eq.~30! over q1,2 we use the integral repre
sentation of the Bessel functions and implement the sad
point method. Both of theq integrals in Eq.~30! have the
same saddle point

qs
25km

2 F12S %

c̃~ t2t8!
D 2G , ~32!

so that simple calculation then yields

^I ~R,R0 ;t !&'
km

2

2v0
E

2`

t dt8

~ t2t8!2

uA~ t8!u2

qsLb~qs!

3expF2g
v0

«0
~ t2t8!G

3E
0

`

dm W~m!n2~m!expF2n~m!
uz2z0u
Lb~qs!

G .
~33!

This result for the space-time distribution of the average
tensity of a point-source-radiated narrow-band signal
rather general and is valid for arbitrary envelopeA(t). It is
simplified substantially when the distance% is large enough
for the pulse duration to be less than the time of the pu
arrival at the observation point in homogeneous@d«(z)
50# medium. In this case, the upper limit in the integr
over t8 in Eq. ~30! may be extended to the infinity, all func
tions in the integrand of Eq.~33! may be taken att850, and
from Eq. ~33! we obtain

^I ~R,R0 ;t !&'
km

2 c̃T

2~v0t !2Lm

exp~2gv0t/«0!

@12~%/ c̃t !2#3/2

3E
0

`

dm W~m!n2~m!

3expH 2
n~m!uz2z0u

Lm@12~%/ c̃t !2#
J . ~34!

Here, Lm5Lb(km ,v0) is the largest value of the
backscattering-induced extinction length~localization
length! corresponding to the most ‘‘energetical’’~i.e., q2
5km) harmonics, and

T5E
2`

`

dt8uA~ t8!u2.

Although the intensity of a monochromatic field is know
to be a strongly fluctuating, not a self-averaged quantity
1D disordered systems, the integration of the correlator~23!
over parametersv and q ~the last integration correspond
physically to the summation of plane harmonics with diffe
ent angles of propagation! serves as an additional averagin
factor that suppresses fluctuations of the intensity of
wave packet, and therefore makes the results obtained
ansemble averaging, Eqs.~33! and ~34!, more physically
meaningful.
0-5
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V. DISCUSSIONS OF THE RESULTS

Equations~33! and ~34! present the space-time depe
dence of the average intensity of a narrow-band pulse si
radiated by a point source in a randomly layered wea
dissipative medium. Here, we dwell on the main physi
characteristics of the result that are manifestations of
strong Anderson localization in 1D disordered media.

First, it is evident from Eqs.~33! and ~34! that the pulse
field is exponentially localized inz direction within a 4Lm
thick layer whose central planez5z0 is the plane where the
source is located. In other words, the point-source pulse
diation is channelled, much as the monochromatic radia
is, within the fluctuation waveguide that is created owing
the interference of multiply back-scattered plane harmon
even though the regular refraction does not exist in the s
tem.

The next interesting feature is that the narrow-band pu
acquires universal shape at large distances in the fluctua
waveguide. Indeed, under the assumption that in-plane
tance to the observation point is such thatr. c̃T, the average
intensity is described by formula~34! and depends on th
envelope of the incident pulse,A(t), only through the nor-
malization constantT. In Fig. 1, a set of curves is presente
depicting the intensity distribution as a function of the i
plane distance% at a given timet for different distances in
the direction perpendicular to layers,z5uz2z0u/4Lm . In
Fig. 2, the time dependence of the pulse intensity is show
a certain distance% and three differentz. As it is seen from
the graphs, during the propagation in the fluctuation wa
guide, the signal acquires a rather slowly decaying tail,
at large distances from the maximum of the pulse, the int
sity decreases in time proportionally tot22. The weak sen-
sitivity of the wave packet to its initial shape is due to t
fact that in randomly layered media~in distinction to free
space! a point source radiates only those eigenmodes tha
localized in a narrow~of the size of the localization length!
stripe near the source@2,4#. The~random! set of these mode
is a fingerprint of each realization of random potential and
independent on the way of excitation.

FIG. 1. Instantaneous~at time t) spatial distributions of the in-
tensity in the fluctuation waveguide at differentz5uz2z0u/4Lm .
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Another peculiarity of the pulse propagation in a ra
domly layered medium is a sort of ‘‘anisotropy’’ of the tim
delay of the wave packet: the arrival time increases w
increasinguz2z0u faster than it does when% grows. Indeed,
the earliest signal arrival time at a point$%,z% is of order
A%21(z2z0)2/ c̃. At this moment, if%@Lm , the spatial dis-
tribution of pulse in the fluctuation waveguide (uz2z0u
,Lm) given by Eq.~34! contains the exponentially sma
term

expF2n~m!
%2

Lmuz2z0u G!1. ~35!

The momenttm when the signal at the point$%,z% reaches its
not exponentially small maximum may be roughly estima
by equating the localization exponent in Eq.~34! to unity.
This procedure yields

tm;
%

c̃
F12JS z2z0

Lm
D 2G21/2

~36!

with some numerical coefficientJ;1. Although the esti-
mate ~36! cannot claim for satisfactory accuracy, it gives
reasonable idea of the pulse delay in a stratified medium
accurately calculate the dependence of the arrival time of
pulse maximum as a function of the transverse displacem
uz2z0u one should use Eq.~34!. The results of this~numeri-
cal! calculation is shown in Fig. 3.

VI. CONCLUDING REMARKS

To summarize, in this paper, the problem of the spa
time distribution of the average intensity of a narrow-ba
pulse that is radiated by a point source in a 3D random
layered medium has been solved by means of the genera
resonance expansion method. The pulse field is shown t
localized in the direction of stratification and channelled p
allel to the layers within the fluctuation waveguide who
symmetry plane goes through the source location. The wa

FIG. 2. Time dependences of the intensity at a given in-pla
distance% and differentz5uz2z0u/4Lm .
0-6
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guide originates exclusively from the interference of rand
fields multiply scattered by weak fluctuations, with no reg
lar refraction present in the medium. The typical width of t
waveguide is of the order of the localization length of t
harmonics with the largest allowable momentum along
axis of stratification. Random lamination of the mediu
leads to a substantial distortion of the pulse shape. Spe
cally, far away from the source, the narrow-band pulse
any original spectral content, being locked within the flu
tuation waveguide, spreads into a signal with the envel
given by the universal function~34! depicted in Figs. 1 and
2. In contrast to homogeneous media, the dependance o
arrival time of the pulse maximum on coordinates is stron
anisotropic: it increases drastically as the observation p
moves in thez direction away from source. This delay is n
due to the increase of the path length of the signal, as i
for example, in media with regular refraction, but is caus
by the multiple random scattering of the saddle-point h
monics~32!.
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APPENDIX A: CALCULATION OF THE GREEN MATRIX
EQ. „10…

To find the 1D Green function of Eq.~6!, we express it
via solutions of the appropriate Cauchy problems,

G~z,z0!5W 21@c1~z!c2~z0!u~z2z0!

1c1~z0!c2~z!u~z02z!#. ~A1!

Here, the functionsc6(z) are the linear-independent solu
tions of homogeneous Eq.~6! with boundary conditions
given at either ‘‘plus’’ or ‘‘minus’’ infinity, depending on
the ‘‘sign’’ index, W is the Wronskian of those functions
u(z) is the Heaviside unit-step function.

In the case of realq, it is reasonable to represent th
functions c6(z) as superpositions of modulated harmon
waves propagating in opposite directions of thez axis,

c6~z!5p6
D ~z!exp~6 iqz!2 ig6

D ~z!exp~7 iqz!. ~A2!

The upper indexD indicates that the corresponding functio
are related to the first Green function in Eq.~4!.

FIG. 3. Arrival time of the pulse maximum,tm , ~in units %/ c̃!
vs z5uz2z0u/4Lm .
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Under WS conditions~16! the ‘‘amplitudes’’ p6
D (z) and

g6
D (z) in Eq. ~A2! are smooth functions in comparison wit

the nearby standing fast exponentials. By averaging
equations forc6(z) over the interval of the length 2l inter-
mediate between ‘‘small’’ and ‘‘large’’ lengths of Eq.~16!,
we arrive at a following set of dynamic equations:

6p6
D8~z!1 i @h~z!2Dq2/2q#p6

D ~z!1z6~z!g6
D ~z!50,

~A3a!

6g6
D8~z!2 i @h~z!2Dq2/2q#g6

D ~z!1z6* ~z!p6
D ~z!50.

~A3b!

The functionh(z) in Eq. ~A3! coincides with the analogou
function from Eq.~12!, with v being replaced byv1V. The
functionsz6(z) are given by

z6~z!5
21

2q S v1V

c D 2E
z2 l

z1 l dz8

2l
e72iqz8d«~z8!. ~A4!

Sommerfeld’s radiation conditions atz→6` are reformu-
lated as the ‘‘initial’’ conditions for the smooth amplitudes

lim
z→6`

p6
D ~z!51, lim

z→6`

g6
D ~z!50. ~A5!

In a similar way the second Green function in Eq.~4! is to be
represented, keeping in mind that in this case,Dq250 and
V50.

WronskianW in Eq. ~A1! within the WS limit reduces to

W52iq@p1
D ~z!p2

D ~z!1g1
D ~z!g2

D ~z!#. ~A6!

By inserting then Eqs.~A2! and ~A6! into Eq. ~A1! and
comparing the result with Eq.~9!, we obtain for the matrix
elements of Eq.~10!

G1,2~z,z0uv1V,q21Dq2!

52
2p i

q
AD~z0!F u6

p6
D ~z!

p6
D ~z0!

2u7G6
D ~z0!

g7
D ~z!

p7
D ~z0!

G ,

~A7a!

G3,4~z,z0uv1V,q21Dq2!

52
2p

q
AD~z0!F u6

p6
D ~z!

p6
D ~z0!

G7
D ~z0!1u7

g7
D ~z!

p7
D ~z0!

G .

~A7b!

Here,u65u@6(z2z0)# and the rest of notations are

AD~z!5@11G1
D ~z!G2

D ~z!#21, ~A8a!

G6
D ~z!5g6

D ~z!/p6
D ~z!. ~A8b!

The upper sign indices in Eq.~A7! correspond toG1 andG3
whereas the lower signs toG2 andG4, respectively. The func-
tions G6

D (z) andp6
D (z) obey the Riccati-type coupled equa

tions resulting directly from Eq.~A3!,
0-7
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6
dG6

D ~z!

dz
52i Fh~z!2

Dq2

2q GG6
D ~z!2z6* ~z!

1z6~z!@G6
D ~z!#2, ~A9a!

6
d

dz

1

p6
D ~z!

5 i Fh~z!2
Dq2

2q G 1

p6
D ~z!

1z6~z!
G6

D ~z!

p6
D ~z!

.

~A9b!

The initial conditions for Eqs.~A9! follow from Eq. ~A5!.
Transition from Eqs.~A3! to ~A9! is motivated by the

following. In the stationary and nondissipative limiting ca
(Dq250 andg50) the functionsG6(z) represent the am
plitude reflection coefficients for the harmonicsq incident on
the 1D disordered half-spaces (z,6`), respectively. In the
presence of arbitrary weak dissipation, these functions
come modulo less than unity allowing for the factorAD(z)
given by Eq.~A8a! to be expanded into a series in powers
the productG1

D G2
D . Averaging then termwise the double s

ries into which the product of the Green functions in Eq.~4!
is expanded we arrive eventually at the expression~19!.

APPENDIX B: ANALYSIS OF THE
FORWARD-SCATTERING CONTRIBUTION

Equation ~21a! may be solved rigorously ata50 ~see,
e.g., Ref. @6#!, therefore it is not difficult to obtain an
asymptotic expression forRn at uau!1. With the accuracy of
the first order ina2, one may find that

Rn5bE
0

`

dt e2btS t

11t D
n

3H 11a2S 112
Lb

Lf
D tF11t2

bt

6
~312t !G J . ~B1!

When ubu!1, the domain corresponding tot;ubu21 is sig-
nificant in the integral~B1!. Therefore, the contribution o
the terms proportional toa2 is of the orderua/bu2. It follows
from Eqs.~5! and ~22! that

UabU& c̃

vLb
. ~B2!

In the r.h.s. of Eq.~B2!, there is nothing but a small WS
parameter that governs all the approximations made in
course of solution. Therefore, the terms proportional toa2 in
Eq. ~B1! lead to the corrections that are less than the ca
lation accuracy, and must be omitted in Eq.~B1!.

To analyze Eq.~21b!, we present the correlation functio
~19!, using Eq.~B1! at a50, in the integral form,

K~s!5S 2p

q D 2 eb

b E
b

`

dj e2j~2j2b!@ys~j!1y2s~j!#.

~B3!
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Here,ys(j) is the function related to the generating functio
Ys(j)5(n50

` znPn(s) by the equality

ys~j!5
j

b
YsS 12

j

b D . ~B4!

From Eq.~21b!, it follows that ys(j) obeys the differential
equation

F2
d

dj
j2

d

dj
1j

d

dj
j1b

d

dj
jS d

dj
21D

1 i S s2
Dq2

2q DLbys~j!1
1

2 S a

b D 2

Q̂bys~j!

5LbF21~2j2b!ejEi~2j!1S a

b D 2

Pb~j!G , ~B5!

where

Pb~j!5S 112
Lb

Lf
DebE

b

`

dj8 e2j8
~2j82b!~j82b!

j81~j2b!

3@j82~j82b!~2j81b!#, ~B6!

and the differential operatorQ̂b has the form

Q̂b52S j
d

dj
j D 2

2bH j
d

dj
j,H d

dj
,jJ

1
J

1

1b2H j
d

dj
j,

d

djJ
1

1
Lb

Lf
F4S j

d

dj
j D 2

14bS j
d

dj
j2H j

d

dj
j,

d

dj
jJ

1
D 1b2S 122

d

dj
j D 2G .

~B7!

The brackets$ . . . , . . .%1 in Eq. ~B7! denote an anticom-
mutator. It is evident from Eq.~B3! that the solution of Eq.
~B5! is of importance in the domainj&1. In that region, the
estimation is valid

iQ̂bi;uPb~j!u;11
Lb

Lf
.

Thus, we conclude that the terms proportional toQ̂b and
Pb(j), that contain the forward-scattering parameterLf ,
contribute negligibly, in accordance with WS parame
~B2!, to the solution of Eq.~B5!, just in the same way as th
terms}a2 in Eq. ~B1!.
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